The BRCA2 Gene

BRCA2 is an autosomal dominant gene.

BRCA2 accounts for approximately 3-4% of all breast cancers.

Clinical Significance

***Women with BRCA2 have a 50-85% chance of developing breast cancer, and a 15-25% chance of developing ovarian cancer.**

#Men with BRCA2 have a increased chance of developing male breast cancer.

#BRCA2 is associated with other cancers, including prostate and pancreatic cancer.

Possible Surveillance

**Women who know they have the BRCA2 gene can practice careful surveillance, including yearly mammography and trans-vaginal ultrasound.

It is unclear whether increased surveillance improves survival.

Interventions for Women

- ******Mastectomy and tamoxifen may reduce the risk of breast cancer.
- ****Oophorectomy may reduce the risk of ovarian cancer.**
- ****Oral contraceptives may reduce the risk of ovarian cancer, but may increase the risk of breast cancer.**

Family Studies

- # The clinical genetics branch of NCI has been conducting a number of family studies over the past 15 years.
- ****All family members who have participated in previous studies are offered genetic testing for the gene that has been identified in their family.**

Study Testing

****The researchers promise not to share results of individuals' tests, without their permission.**

****However, the implications of test results for other family members are explained, and individuals are encouraged to share results as appropriate.**

The Smith Family

Mr. Smith developed male breast cancer at age 60, and prostate cancer at age 73.

#His mother died from ovarian cancer, and his daughter had early-onset breast cancer.

Previous Research

Members of the Smith family have previously participated in family studies with the clinical genetics branch.

#The research identified a mutation of the BRCA2 gene in the Smith family.

Smith Family Test Results

***Two of Mr. Smith's daughters and 2** granddaughters elect to be tested for the BRCA2 mutation.

****Testing reveals both daughters (one of whom has breast cancer), and both granddaughters have the same BRCA2 mutation.**

John Smith

#One of Mr. Smith's sons, John Smith, 57 years old, also elects to be tested for the family's BRCA2 gene mutation.

#Before being tested, John reports that he wants to protect his father from feelings of "transmission guilt"

John Smith's Test Results

#Testing reveals that John Smith has the BRCA2 gene mutation that is related to the risk of breast and ovarian cancer in his family.

XThe team informs John of his test results.

John Reports his Results

With members of the research team present, John tells his family that he does <u>NOT</u> have the BRCA2 gene.

#Later, he tells the researchers that he will inform his daughter that he has the gene mutation "when the time is right."

Impact on the Children

****The team is worried John will continue to**misinform his daughter (and sons), and they will assume they do not have the mutation.

%As a result, they may forgo testing and surveillance, even though there is a 50% chance they inherited the mutation related to the family's cancer susceptibility.

The Team's Dilemma

***The team wonders what, if any, steps it should take.**

Is the team obligated to protect John Smith's confidentiality, or is there an ethically acceptable way to warn his children?